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Shisha [31 has introduced the concept of integration rules of the second
kind for numerical integration; later Burrows [1 I arrived at the same idea. In
Fig. 1, wherefis a continuous strictly increasing function on la, bl and 0 ~
a < b < 00 and f(a) ? 0, it is clear by interpreting the integrals as areas that

·0 ·tlbl

I f(x)dx=bf(b)-af(a)-I f l(y)dy.
. a . /(01

(I)

A numerical integration rule to approximate the right-hand side of (1 ) is
called an "integration rule of the second kind" for Jz f. We note that
formulas generalizing (I) and, hence, integration rules of the second kind are
available for f and Ia, b I more generaL cf. [3, p. 225; 1, p. 1521. For thl;: sakt:
of simplicity we shall restrict ourselves to the setting of the sentence
containing (1).

Our first observation is an extension of a well-known (cf. [2, p. 421 )
"bracketing" property of the midpoint and trapezoidal rules. Let f be a
strictly increasing convex function on [a, b I, 0 ~ a < b < 00, and f(a) ? O. If

b-a
h=-

n

is the compound trapezoidal rule sum applied to J~ f(x) dx, if 1; IS the
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FIG. I. Geometrical interpretation of (1).
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approximation to (1) obtained by applying a compound trapezoidal rule
(again with n subintervals) to S;:~U- I, i.e., a compound trapezoidal rule of
the second kind, and if 1M and 1't.1 are the corresponding quantities for the
midpoint rule, we have

b

max(IM ,I't.1),,;;;f f";;; min(IT,I~)· (2)
a

We can verify (2) as follows:
Since the trapezoidal rule sum results from integrating a polygonal

function ~f, f~f";;;IT' as is known. Noting that -f-I is convex gives

b f(b)f f=bf(b)-a!(a)-! f-l(y)dy";;;l~
a f(a)

from which the second inequality in (2) follows. The first inequality can be
obtained similarly.

Our next observation gives conditions guaranteeing that a compound
trapezoidal rule of the second kind has smaller error than the corresponding
compound trapezoidal rule applied directly to f~ f.

THEOREM 1. Let f be a real function on [a, b], -OC) < a < b < oc), with
f' > 0 and fit continuous there and f' (a) *- f I (b). For n = 2, 3,... , let

b r n-I J
Tn = ~a Lf (a)+f(b)+2 f;1 f(a+kh) ,

b-a
h=-

n

be the compound trapezoidal rule applied to f~ f and let T~ be the compound
trapezoidal rule applied to S;:~U-t. Suppose

640/41/4-7

[(f(b) - f(a»/(b - a}p < f'(a)f'(b). (3 )
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Then there exists an N such that [or all n ~ N,

(4)

This implies, if a ~°and [(a) ~ 0, that the compound trapezoidal rule of
the second kind is better for large n than the ordinary compound trapezoidal

rule.

Proof It is known (cf. [2, pp. 42, 58\) that

I
'b I (b a)2

lim n 2
I [- Tn 'I = - I['(b) - ['(a)l·

n~C1' • a 12
(5 )

Noting that, on [[(a),f(b) I, (f I),(y) = 1/['(f 1(.1'», we have similarly

n--+x I
((bi [-I - T~ 1= [[(b) - !(aW l(f-I)'(f(b» - (f
'~a, I,

= 1[(b)-[(a)!21['(b)-['(a)l·
12 I ['(a)['(b)

I )'(f(a)1

(6)

Now (4) follows from (3), (5), and (6).

Remarks. ( I ) If (3) holds with the inequality reversed, then so does
(4). In this case the compound trapezoidal rule of the second kind for .17, [

would be worse. However, therefore the compound trapezoidal rule of the
second kind for ni~j [-I would be better than the compound trapezoidal rule
for that integral.

(2) The hypotheses of Theorem I ensure that, for large n, the
compound midpoint rule of the second kind for J~ [ is better than the
(ordinary) compound midpoint formula M n for J~ f. The proof is virtually
identical to the proof of Theorem I since (cf. [2, pp. 42, 58 J)

l
ob I (b a) 2

lim n 2 I [_. M n = - I['(b) - ['(a)l·
n ~C1, .' a 24

a < ¢ < [3,

(3) Let R be a (simple) integration rule with an error of the form

·iJ
I [-R=c(!J-a)'p k '(¢), (7 )

where sand k are positive integers and c is independent of a, [3, and f. Then
results about the superiority, for large n, of the compound version of R of the
second kind can be obtained as above, using a slight generalization of the
second theorem on page 58 in [21. (For example, the Newton~Cotes and
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TABLE I

Absolute Value of Error in Using a Compound Trapezoidal Rule

Integral n = 16 n = 128 n = 512

I
·e

log x dx 0.00060725 0.00000923 0.00000077
'1

·1I eY dy 0.00055921 0.00000882 0.00000023
'0

.1

I VX dx 0.00308555 0.00014096 0.00001788
. 0

.1I y2 dy 0.00065103 0.00001016 0.00000008
'0
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Gauss-Legendre rules satisfy (7).) However, the condition analogous to (3)
will involve higher derivatives off-I and will not be as nice as (3).

Table I shows the absolute value of the error when the compound
trapezoidal rule is used for f(x) == log x, a = 1, b = e, and for f-I(y) == eY ,

f(a) = 0, f(b) = 1. It is easily verified that f satisfies the hypotheses of
Theorem 1 and hence the compound trapezoidal rule of the second kind is
superior for n large. However, both J~f - Tn and Jji~V-I - T~ are O(n -2)
(cf. (5), (6)) and the improvement due to using the rule of the second kind is
slight. Table I also includes numerical results for J~ f(x) dx = nvx dx and
Hi~V-I(y)dy = ny2 dy. Here the hypotheses of Theorem 1 are not
satisfied (sincef'(O) does not exist) but the compound trapezoidal rule of the
second kind is markedly superior. In fact ny2 dy - T;, is O(n -2) whereas it
can be shown that nvx dx - Tn;> c/n 3

/
2

, c > 0, for all n.
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